An explanatory analytics framework for early detection of chronic risk factors in pandemics

dc.authorid0000-0003-2885-6014
dc.authorid0000-0001-8857-5148
dc.authorscopusid57189870930
dc.authorscopusid56016604600
dc.authorscopusid55887961100
dc.contributor.authorDelen, Dursun
dc.contributor.authorDelen, Dursun
dc.contributor.authorDavazdahemami, Behrooz
dc.contributor.authorZolbanin, Hamed M.
dc.contributor.authorDelen, Dursun
dc.contributor.otherYönetim Bilimleri Fakültesi, İşletme Bölümü
dc.contributor.otherYönetim Bilimleri Fakültesi, İşletme Bölümü
dc.date.accessioned2022-01-28T08:18:17Z
dc.date.available2022-01-28T08:18:17Z
dc.date.issued2022
dc.departmentİHÜ, Yönetim Bilimleri Fakültesi, İşletme Bölümü
dc.description.abstractTimely decision-making in national and global health emergencies such as pandemics is critically important from various aspects. Especially, early identification of risk factors of contagious viral diseases can lead to efficient management of limited healthcare resources and saving lives by prioritizing at-risk patients. In this study, we propose a hybrid artificial intelligence (AI) framework to identify major chronic risk factors of novel, contagious diseases as early as possible at the time of pandemics. The proposed framework combines evolutionary search algorithms with machine learning and the novel explanatory AI (XAI) methods to detect the most critical risk factors, use them to predict patients at high risk of mortality, and analyze the risk factors at the individual level for each high-risk patient. The proposed framework was validated using data from a repository of electronic health records of early COVID-19 patients in the US. A chronological analysis of the chronic risk factors identified using our proposed approach revealed that those factors could have been identified months before they were determined by clinical studies and/or announced by the United States health officials.
dc.identifier.citationDavazdahemami, B., Zolbanin, H. M. ve Delen, D. (2022). An explanatory analytics framework for early detection of chronic risk factors in pandemics. Healthcare Analytics, 2, 100020. https://doi.org/10.1016/j.health.2022.100020
dc.identifier.doi10.1016/j.health.2022.100020
dc.identifier.issn2772-4425
dc.identifier.pmid35068629
dc.identifier.scopus2-s2.0-85123197338
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://doi.org/10.1016/j.health.2022.100020
dc.identifier.urihttps://hdl.handle.net/20.500.12154/1693
dc.identifier.volume2
dc.indekslendigikaynakPubMed
dc.indekslendigikaynakScopus
dc.institutionauthorDelen, Dursun
dc.institutionauthorid0000-0001-8857-5148
dc.language.isoen
dc.publisherElsevier
dc.relation.ihupublicationcategory233
dc.relation.ispartofHealthcare Analytics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMachine Learning
dc.subjectExplanatory Artificial Intelligence
dc.subjectPandemic Risk Analysis Pandemic
dc.subjectDiagnostic Analytics
dc.titleAn explanatory analytics framework for early detection of chronic risk factors in pandemics
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublicationde384c43-bcde-4ccb-a0b7-39ead0e59bd0
relation.isAuthorOfPublication.latestForDiscoveryde384c43-bcde-4ccb-a0b7-39ead0e59bd0
relation.isOrgUnitOfPublicationc9253b76-6094-4836-ac99-2fcd5392d68f
relation.isOrgUnitOfPublication.latestForDiscoveryc9253b76-6094-4836-ac99-2fcd5392d68f

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
delen_d.pdf
Boyut:
1.57 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.52 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: