The use of multi-criteria decision-making methods in business analytics: A comprehensive literature review

dc.authorid0000-0001-8857-5148
dc.contributor.authorDelen, Dursun
dc.contributor.authorDelen, Dursun
dc.contributor.authorYalçın, Ahmet Selçuk
dc.contributor.authorKılıç, Hüseyin Selçuk
dc.contributor.authorDelen, Dursun
dc.contributor.otherYönetim Bilimleri Fakültesi, İşletme Bölümü
dc.contributor.otherYönetim Bilimleri Fakültesi, İşletme Bölümü
dc.date.accessioned2021-10-14T07:44:20Z
dc.date.available2021-10-14T07:44:20Z
dc.date.issued2022
dc.departmentİHÜ, Yönetim Bilimleri Fakültesi, İşletme Bölümü
dc.description.abstractBusiness analytics (BA) systems are considered significant investments for enterprises because they have the potential to considerably improve firms’ performance. With the value offered by BA, companies are able to discover the hidden information in the data, improve decision-making processes, and support strategic planning. On the other hand, because there are multiple criteria and multiple alternatives involved in most decision- making situations, multi-criteria decision-making (MCDM) methods play an important role in BA practices. Providing inputs to the components of descriptive or predictive analytics or being used as a decision-making tool for evaluating the alternatives within prescriptive analytics exemplify the roles. Therefore, the use of hidden information discovered by business analytics and the need for utilizing the right MCDM method for optimal decision-making made these two concepts inseparable. In this paper, in order to review the use of MCDM methods in BA, the subject of BA is investigated from a taxonomical perspective (descriptive, predictive, and prescriptive), and its connection with MCDM techniques is revealed. Similarly, MCDM methods are studied using two main categories, multi-attribute decision making (MADM) and multi-objective decision making (MODM) methods. Furthermore, tabular and graphical analyses are also performed within the proposed review meth-odology. To the best of our knowledge, this review is the first attempt that holistically considers the use of MCDM methods in BA.
dc.identifier.citationYalçın, A. S., Kılıç, H. S. ve Delen, D. (2022). The use of multi-criteria decision-making methods in business analytics: A comprehensive literature review. Technological Forecasting and Social Change, 174. https://doi.org/10.1016/j.techfore.2021.121193
dc.identifier.doi10.1016/j.techfore.2021.121193
dc.identifier.scopus2-s2.0-85115179354
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.techfore.2021.121193
dc.identifier.urihttps://hdl.handle.net/20.500.12154/1616
dc.identifier.volume174
dc.identifier.wosWOS:000701672300018
dc.identifier.wosqualityQ1
dc.indekslendigikaynakScopus
dc.indekslendigikaynakWeb of Science
dc.institutionauthorDelen, Dursun
dc.institutionauthorid0000-0001-8857-5148
dc.language.isoen
dc.publisherElsevier
dc.relation.ihupublicationcategory114
dc.relation.ispartofTechnological Forecasting and Social Change
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectBusiness Analytics
dc.subjectDecision Support
dc.subjectMulti-criteria Decision Making (MCDM)
dc.subjectMulti-Attribute Decision-Making (MADM)
dc.subjectMulti-Objective Decision-Making (MODM)
dc.titleThe use of multi-criteria decision-making methods in business analytics: A comprehensive literature review
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublicationde384c43-bcde-4ccb-a0b7-39ead0e59bd0
relation.isAuthorOfPublication.latestForDiscoveryde384c43-bcde-4ccb-a0b7-39ead0e59bd0
relation.isOrgUnitOfPublicationc9253b76-6094-4836-ac99-2fcd5392d68f
relation.isOrgUnitOfPublication.latestForDiscoveryc9253b76-6094-4836-ac99-2fcd5392d68f

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
[ N/A ]
İsim:
Delen-D.pdf
Boyut:
2.82 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
[ N/A ]
İsim:
license.txt
Boyut:
1.52 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: