Decoding Turkish Lira volatility using natural language processing, news and Twitter sentiment, and explainable AI

dc.authorid0000-0001-8450-7551
dc.authorid0000-0002-5131-577X
dc.authorid0000-0002-0685-7641
dc.contributor.authorIbrahim, Mahat Maalim
dc.contributor.authorKhan, Asad ul Islam
dc.contributor.authorKaplan, Muhittin
dc.contributor.otherYönetim Bilimleri Fakültesi, İktisat Bölümü
dc.date.accessioned2025-07-03T06:59:24Z
dc.date.issued2025
dc.departmentİHÜ, Lisansüstü Eğitim Enstitüsü, İktisat Ana Bilim Dalı
dc.departmentİHÜ, Yönetim Bilimleri Fakültesi, İktisat Bölümü
dc.description.abstractThis study examines the Turkish Lira/US Dollar exchange rate volatility from January 2015 through February 2024-a period when the Lira depreciated dramatically against the USD. This currency collapse triggered serious economic problems: High inflation, soaring import prices, reduced purchasing power, persistent price increases, lower real wages, higher external debt costs, limited monetary policy options, and volatile financial markets. While previous research has used Twitter sentiment for financial forecasting, our study contributes to the literature by analyzing both international news sources (The Economist, The New York Times, and The Guardian) and local Turkish sources (Yenisafak newspaper and social media Turkish Twitter content). Using explainable AI techniques, we investigate how news sentiment from different sources affects exchange rate volatility. The results indicate that international media sentiments impact the volatility of the Turkish lira/US dollar exchange rate. The overall sentiment derived from news sources effectively captures fluctuations in volatility. However, local media appears to have a comparatively weaker influence than international news.
dc.identifier.citationIbrahim, M. M., Khan, A. I. & Kaplan, M. (2025). Decoding Turkish Lira volatility using natural language processing, news and Twitter sentiment, and explainable AI. International Journal of Economics and Financial Issues, 15(4), 317-326. https://www.doi.org/10.32479/ijefi.19724
dc.identifier.doi10.32479/ijefi.19724
dc.identifier.endpage326
dc.identifier.issn2146-4138
dc.identifier.issue4
dc.identifier.scopus2-s2.0-105008767254
dc.identifier.scopusqualityQ4
dc.identifier.startpage317
dc.identifier.urihttps://www.doi.org/10.32479/ijefi.19724
dc.identifier.urihttp://hdl.handle.net/20.500.12154/3399
dc.identifier.volume15
dc.indekslendigikaynakScopus
dc.institutionauthorIbrahim, Mahat Maalim
dc.institutionauthorKhan, Asad ul Islam
dc.institutionauthorKaplan, Muhittin
dc.institutionauthorid0000-0001-8450-7551
dc.institutionauthorid0000-0002-5131-577X
dc.institutionauthorid0000-0002-0685-7641
dc.language.isoen
dc.publisherEconjournals
dc.relation.ispartofInternational Journal of Economics and Financial Issues
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Öğrenci
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.relation.publicationcategoryÖğrenci
dc.relation.sdgGoal-08: Decent Work and Economic Growth
dc.relation.sdgGoal-10: Reduced Inequalities
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectExchange Rate
dc.subjectExplainable Ai
dc.subjectMachine Learning
dc.subjectNews Sentiment
dc.subjectNLP
dc.subjectVolatility
dc.titleDecoding Turkish Lira volatility using natural language processing, news and Twitter sentiment, and explainable AI
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication5d56d061-267c-4b33-8b78-b50e651ee5aa
relation.isAuthorOfPublication04e6333a-2ec2-4c28-a02b-c49e3f178e90
relation.isAuthorOfPublication.latestForDiscovery5d56d061-267c-4b33-8b78-b50e651ee5aa
relation.isOrgUnitOfPublication9d1809d1-3541-41aa-94ed-639736b7e16f
relation.isOrgUnitOfPublication.latestForDiscovery9d1809d1-3541-41aa-94ed-639736b7e16f

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
ibrahim-khan-kaplan.pdf
Boyut:
2.83 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: