Analyzing anomalies for financial fraud detection: A case study of selected insurance companies listed in Borsa Istanbul

dc.authorid0000-0002-3055-7729
dc.authorid0000-0002-0685-7641
dc.authorid0000-0002-5131-577X
dc.contributor.authorLatif, Muhammad Nouman
dc.contributor.authorKaplan, Muhittin
dc.contributor.authorKhan, Asad ul Islam
dc.contributor.otherYönetim Bilimleri Fakültesi, İktisat Bölümü
dc.date.accessioned2025-07-18T12:12:22Z
dc.date.issued2025
dc.departmentİHÜ, Lisansüstü Eğitim Enstitüsü, İktisat Ana Bilim Dalı
dc.departmentİHÜ, Yönetim Bilimleri Fakültesi, İktisat Bölümü
dc.description.abstractThis study aims to identify anomalies in the financial data of six leading insurance companies listed on Borsa Istanbul, Türkiye. Traditional anomaly detection methods like GARCH, ARIMA and moving averages have inherent limitations, including the requirement of stationarity, strict distributional assumptions and risks of model mis-specification. To address these issues, we employ four alternative risk measures, i.e., Down-to-Up Volatility (DUV), Negative Conditional Skewness (NCS), Relative Frequency (RF) and the Garman-Klass (GK) on daily stock price data, thereby avoiding stationarity and distribution-related constraints. Our findings reveal significant differences in anomaly detection across these measures. While DUV and RF, which are based on second-moment calculations, capture variations in volatility, the GK approach (computed daily) and the NCS, which considers third-moment characteristics, provide complementary insight. To enhance robustness, we apply both Z-score normalization and Mahalanobis distance for joint anomaly detection. The Z-score method treats all risk measures equally and is suitable for normally distributed data but overlooks potential correlations. In contrast, Mahalanobis distance accounts for multivariate anomalies and interdependencies between risk measures, offering a more holistic approach. Our results indicate that Mahalanobis distance outperforms Z-Score normalization in detecting anomalies in five out of six insurance companies, except in the case of RAYSG. This study underscores the importance of alternative risk measures and multivariate anomaly detection techniques in financial fraud analysis, offering valuable insights for risk management and regulatory practices in emerging financial markets.
dc.identifier.citationLatif, M. N., Kaplan, M. & Khan, A. I. (2025). Analyzing anomalies for financial fraud detection: A case study of selected insurance companies listed in Borsa Istanbul. FWU Journal of Social Sciences, 19(2), 59-72. https://www.doi.org/10.51709/19951272/Summer2025/5
dc.identifier.doi10.51709/19951272/Summer2025/5
dc.identifier.endpage72
dc.identifier.issn1995-1272
dc.identifier.issue2
dc.identifier.scopus2-s2.0-105009630056
dc.identifier.scopusqualityQ2
dc.identifier.startpage59
dc.identifier.urihttps://www.doi.org/10.51709/19951272/Summer2025/5
dc.identifier.urihttp://hdl.handle.net/20.500.12154/3415
dc.identifier.volume19
dc.indekslendigikaynakScopus
dc.institutionauthorLatif, Muhammad Nouman
dc.institutionauthorKaplan, Muhittin
dc.institutionauthorKhan, Asad ul Islam
dc.institutionauthorid0000-0002-3055-7729
dc.institutionauthorid0000-0002-0685-7641
dc.institutionauthorid0000-0002-5131-577X
dc.language.isoen
dc.publisherShaheed Benazir Bhutto Women University
dc.relation.ispartofFWU Journal of Social Sciences
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Öğrenci
dc.relation.publicationcategoryÖğrenci
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.relation.sdgN/A
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectAnomaly Detection
dc.subjectEmerging Insurance Market
dc.subjectFinancial Fraud
dc.subjectRisk Measures
dc.titleAnalyzing anomalies for financial fraud detection: A case study of selected insurance companies listed in Borsa Istanbul
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication04e6333a-2ec2-4c28-a02b-c49e3f178e90
relation.isAuthorOfPublication5d56d061-267c-4b33-8b78-b50e651ee5aa
relation.isAuthorOfPublication.latestForDiscovery04e6333a-2ec2-4c28-a02b-c49e3f178e90
relation.isOrgUnitOfPublication9d1809d1-3541-41aa-94ed-639736b7e16f
relation.isOrgUnitOfPublication.latestForDiscovery9d1809d1-3541-41aa-94ed-639736b7e16f

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
latif-kaplan-khan.pdf
Boyut:
894.83 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: