Most stringent test of null of cointegration: A Monte Carlo comparison
dc.authorid | 0000-0002-5131-577X | |
dc.contributor.author | Khan, Asad ul Islam | |
dc.contributor.author | Khan, Asad ul Islam | |
dc.contributor.author | Khan, Asad ul Islam | |
dc.contributor.author | Khan, Waqar Muhammad | |
dc.contributor.author | Hussan, Mehmood | |
dc.contributor.other | Yönetim Bilimleri Fakültesi, İktisat Bölümü | |
dc.contributor.other | Yönetim Bilimleri Fakültesi, İktisat Bölümü | |
dc.date.accessioned | 2020-01-20T08:42:05Z | |
dc.date.available | 2020-01-20T08:42:05Z | |
dc.date.issued | 2022 | |
dc.department | İHÜ, Yönetim Bilimleri Fakültesi, İktisat Bölümü | |
dc.description.abstract | To test for the existence of long run relationship, a variety of null of cointegration tests have been developed in literature. This study is aimed at comparing these tests on basis of size and power using stringency criterion: a robust technique for comparison of tests as it provides with a single number representing the maximum difference between a test’s power and maximum possible power in the entire parameter space. It is found that in general, asymptotic critical values tends to produce size distortion and size of test is controlled when simulated critical values are used. The simple LM test based on KPSS statistic is the most stringent test at all sample sizes for all three specifications of deterministic component, as it has the maximum difference approaching to zero and lesser than 20% for the entire parameter space. | |
dc.identifier.citation | Khan, A. I., Khan, W. M. ve Hussan, M. (2022). Most stringent test of null of cointegration: a Monte Carlo comparison, Communications in Statistics- Simulation and Computation | |
dc.identifier.doi | 10.1080/03610918.2019.1691229 | |
dc.identifier.endpage | 19 | |
dc.identifier.issn | 0361-0918 | |
dc.identifier.issn | 1532-4141 | |
dc.identifier.scopus | 2-s2.0-85075195959 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 1 | |
dc.identifier.uri | https://doi.org/10.1080/03610918.2019.1691229 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12154/1033 | |
dc.identifier.wos | WOS:000497211300001 | |
dc.identifier.wosquality | Q4 | |
dc.indekslendigikaynak | Scopus | |
dc.indekslendigikaynak | Web of Science | |
dc.institutionauthor | Khan, Asad ul Islam | |
dc.language.iso | en | |
dc.publisher | Taylor & Francis | |
dc.relation.ihupublicationcategory | 117 | |
dc.relation.ispartof | Comunications in Statistics - Simulation and Computation | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Comparison | |
dc.subject | Cointegration Tests | |
dc.subject | Power | |
dc.subject | Size | |
dc.subject | Stringency | |
dc.title | Most stringent test of null of cointegration: A Monte Carlo comparison | |
dc.type | Article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5d56d061-267c-4b33-8b78-b50e651ee5aa | |
relation.isAuthorOfPublication.latestForDiscovery | 5d56d061-267c-4b33-8b78-b50e651ee5aa | |
relation.isOrgUnitOfPublication | 9d1809d1-3541-41aa-94ed-639736b7e16f | |
relation.isOrgUnitOfPublication.latestForDiscovery | 9d1809d1-3541-41aa-94ed-639736b7e16f |