Public attitudes toward higher education using sentiment analysis and topic modeling

Yükleniyor...
Küçük Resim

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer Nature

Erişim Hakkı

info:eu-repo/semantics/openAccess

Araştırma projeleri

Organizasyon Birimleri

Organizasyon Birimi
Yönetim Bilimleri Fakültesi, İktisat Bölümü
İktisat Bölümü, başta Türkiye ve çevre ülkeler olmak üzere küresel ekonomileri anlayan, var olan sorunları analiz ederken, iktisadi kuramları ve kavramları yetkin ve özgün bir şekilde kullanma becerisine sahip bireyler yetiştirmeyi amaçlamaktadır.

Dergi sayısı

Özet

This study examines higher education through data-mining methodologies, aiming to uncover key themes and sentiments in global discourse. Utilizing sentiment analysis and topic modeling, the research analyzes 157,943 tweets from 84,423 unique users over a five-month period (January to May 2023). This period was selected, coinciding with the rise of artificial intelligence (AI) tools, particularly ChatGPT. The study investigates the discussions, emotional tones, and dominant topics shaping the global narrative of higher education within X (Twitter) data. Key findings include the geographical distribution of tweets and the most frequent positive and negative perceptions. It also addresses critical issues such as affordability, accessibility, and funding in higher education. Furthermore, the data shows public reactions to AI in higher education are initially negative, while higher education tweets are primarily characterized by positivity and optimism. The higher education tweets are mainly posted on the weekend, with decreased activity during weekdays. This research provides insights into the evolving higher education landscape amid rapid technological advancements.

Açıklama

Anahtar Kelimeler

Higher Education, Text Mining, Topic Modeling, X/Twitter, Sentiment Analysis, Artificial Intelligence, ChatGPT

Kaynak

Discover Artificial Intelligence

WoS Q Değeri

Scopus Q Değeri

N/A

Cilt

4

Sayı

1

Künye

Göçen, A., Ibrahim, M. M. ve Khan, A. I. (2024). Public attitudes toward higher education using sentiment analysis and topic modeling. Discover Artificial Intelligence, 4(1), 1-19. https://www.doi.org/10.1007/s44163-024-00195-4