The impact of personality, behavior, and geography on participation in the private pension system in Türkiye: A machine learning approach
dc.authorid | 0000-0003-4876-8564 | |
dc.authorid | 0000-0002-0685-7641 | |
dc.contributor.author | Verberi, Can | |
dc.contributor.author | Kaplan, Muhittin | |
dc.contributor.other | Yönetim Bilimleri Fakültesi, İktisat Bölümü | |
dc.date.accessioned | 2025-01-29T07:20:50Z | |
dc.date.available | 2025-01-29T07:20:50Z | |
dc.date.issued | 2025 | |
dc.department | İHÜ, Lisansüstü Eğitim Enstitüsü, İktisat Ana Bilim Dalı | |
dc.description.abstract | This study examines regional disparities in the factors that affect participation in the Private Pension System (PPS) in Türkiye, focusing on sociodemographic characteristics, personality traits and behavior, and pension and financial literacy. The behavioral factors identified encompass procrastination, locus of control, pessimism, compulsive buying, and time perspective, and the personality traits include openness, agreeableness, extraversion, neuroticism, and conscientiousness. The study employs data on two provinces in Türkiye, Şırnak and Istanbul, and uses XGBoost and Tree SHAP algorithms and a probit model. Our findings indicate that personality traits such as openness, agreeableness, and conscientiousness have a positive influence on individual engagement in pension plans, whereas extraversion has a negative impact. Additionally, basic pension literacy is more influential than advanced pension literacy. The results also show that regional geography significantly influences personality and behavioral factors. Finally, a perception of protection is a critical factor in PPS participation. | |
dc.identifier.citation | Verberi, C. ve Kaplan, M. (2025). The impact of personality, behavior, and geography on participation in the private pension system in Türkiye: A machine learning approach. Borsa Istanbul Review, 25(1), 149-162. https://www.doi.org/10.1016/j.bir.2024.12.010 | |
dc.identifier.doi | 10.1016/j.bir.2024.12.010 | |
dc.identifier.endpage | 162 | |
dc.identifier.issn | 2214-8450 | |
dc.identifier.issue | 1 | |
dc.identifier.scopus | 2-s2.0-85214785792 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 149 | |
dc.identifier.uri | https://www.doi.org/10.1016/j.bir.2024.12.010 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12154/3173 | |
dc.identifier.volume | 25 | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Kaplan, Muhittin | |
dc.institutionauthorid | 0000-0002-0685-7641 | |
dc.language.iso | en | |
dc.publisher | Borsa Istanbul Anonim Şirketi | |
dc.relation.ispartof | Borsa Istanbul Review | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Behavioral Factors | |
dc.subject | Machine Learning Algorithms | |
dc.subject | Personality Traits | |
dc.subject | Private Pension System | |
dc.subject | Tree SHAP | |
dc.title | The impact of personality, behavior, and geography on participation in the private pension system in Türkiye: A machine learning approach | |
dc.type | Article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 04e6333a-2ec2-4c28-a02b-c49e3f178e90 | |
relation.isAuthorOfPublication.latestForDiscovery | 04e6333a-2ec2-4c28-a02b-c49e3f178e90 | |
relation.isOrgUnitOfPublication | 9d1809d1-3541-41aa-94ed-639736b7e16f | |
relation.isOrgUnitOfPublication.latestForDiscovery | 9d1809d1-3541-41aa-94ed-639736b7e16f |