Assessing renewable energy alternatives with multi-criteria decision-making techniques based on q-rung orthopair fuzzy sets

dc.collaborationNational Collaboration
dc.contributor.authorAyvaz, Berk
dc.contributor.authorNebati, Emine Elif
dc.contributor.authorKuşakcı, Ali Osman
dc.contributor.authorOral, Selin
dc.contributor.authorÖzdemir, Mehmed Rafet
dc.contributor.otherYönetim Bilimleri Fakültesi, İşletme Bölümü
dc.date.accessioned2026-02-16T07:09:06Z
dc.date.issued2026
dc.departmentİHÜ, Yönetim Bilimleri Fakültesi, İşletme Bölümü
dc.description.abstractIn recent years, countries have prioritized the selection of viable renewable energy alternatives, driven by the urgent need for a transition to sustainable energy. Selecting appropriate energy sources requires careful consideration of social, political, economic, and technological factors. This study proposes a comprehensive framework for evaluating renewable energy alternatives using a combination of the CRITIC (Criteria Importance Through Intercriteria Correlation) and MABAC (Multi-Attributive Border Approximation area Comparison) methods, enhanced by quantum-Rung Fuzzy Sets. A detailed evaluation is performed using 22 sub-criteria, grouped into environmental, technological, economic, and sociopolitical dimensions, to assess renewable sources such as wind, solar, geothermal, biomass, wave, hydraulic, and hydrogen. Expert input and literature guide the criteria selection. The model is applied in a case study of the Turkish energy sector, revealing hydrogen as the most promising alternative. Sensitivity analysis confirms the robustness of the results, showing no significant changes in the ranking of energy alternatives. To the best of the authors’ knowledge, this is the first study to combine CRITIC and MABAC methods within the q-ROFS domain to solve the problem of selecting a renewable energy source. This framework provides valuable insights to policymakers, energy planners, and decision-makers, offering a reliable tool for navigating the complexities of renewable energy selection.
dc.identifier.citationAyvaz, B., Nebati, E. E., Kuşakcı, A. O., Oral, S., & Özdemir, M. R. (2026). Assessing renewable energy alternatives with multi-criteria decision-making techniques based on q-rung orthopair fuzzy sets. Soft Computing, 1-33. https://www.doi.org/10.1007/s00500-026-11188-z
dc.identifier.doi10.1007/s00500-026-11188-z
dc.identifier.endpage33
dc.identifier.issn1432-7643
dc.identifier.issn1433-7479
dc.identifier.orcid0000-0002-8098-3611
dc.identifier.orcid0000-0002-3950-4279
dc.identifier.orcid0000-0003-1411-0369
dc.identifier.orcid0000-0003-4714-0249
dc.identifier.orcid0000-0002-3832-9659
dc.identifier.scopus2-s2.0-105029618230
dc.identifier.scopusqualityQ1
dc.identifier.startpage1
dc.identifier.urihttps://www.doi.org/10.1007/s00500-026-11188-z
dc.identifier.urihttp://hdl.handle.net/20.500.12154/3791
dc.indekslendigikaynakScopus
dc.institutionauthorKuşakcı, Ali Osman
dc.institutionauthorid0000-0003-1411-0369
dc.language.isoen
dc.publisherSpringer Nature
dc.relation.ispartofSoft Computing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.relation.sdgGoal-07: Affordable and Clean Energy
dc.relation.sdgGoal-13: Climate Action
dc.relation.sdgGoal-09: Industry, Innovation and Infrastructure
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectRenewable
dc.subjectEnergy
dc.subjectEnergy Sources
dc.subjectFuzzy Sets
dc.subjectQ-Rung Orthopair
dc.subjectMulti-Criteria Decision-Making
dc.titleAssessing renewable energy alternatives with multi-criteria decision-making techniques based on q-rung orthopair fuzzy sets
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication21653521-557b-4059-b2be-1fb429b3258a
relation.isAuthorOfPublication.latestForDiscovery21653521-557b-4059-b2be-1fb429b3258a
relation.isOrgUnitOfPublicationc9253b76-6094-4836-ac99-2fcd5392d68f
relation.isOrgUnitOfPublication.latestForDiscoveryc9253b76-6094-4836-ac99-2fcd5392d68f

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
kusakci-a.pdf
Boyut:
5.52 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: