Neural titans in market prediction: MLP, transformer, & hybrid models across G-7 and China

dc.authorid0000-0003-2397-4126
dc.authorid0000-0001-8450-7551
dc.contributor.authorHassan, Arab Dahir
dc.contributor.authorIbrahim, Mahat Maalim
dc.contributor.otherYönetim Bilimleri Fakültesi, İktisat Bölümü
dc.date.accessioned2025-06-11T06:11:06Z
dc.date.issued2025
dc.departmentİHÜ, Yönetim Bilimleri Fakültesi, İktisat Bölümü
dc.departmentİHÜ, Lisansüstü Eğitim Enstitüsü, İktisat Ana Bilim Dalı
dc.description.abstractThis study aims to conduct a comparative evaluation of eight state-of-the-art forecasting models – TimeMixer, PatchTST, iTransformer, NHITS, NBEATS, SOFTS, RMoK, and BiTCN – representing diverse deep learning architectures, neural basis expansion techniques, and hybrid approaches, for predicting stock market prices. We assess their performance across seven major global indices: the Shanghai Stock Exchange, S&P/TSX Composite, FTSE 100, DAX, CAC 40, S&P 500, and Nikkei 225, using rigorous metrics (MAE, SMAPE and RMSE). Our findings indicate that neural basis expansion models (NHITS, NBEATS) achieve superior overall accuracy (aggregated MAE: 0.013–0.014), particularly in North American and Asian markets. In contrast, transformer-based architectures exhibit market-specific strengths, with iTransformer delivering exceptional performance on Canada’s S&P/TSX (MAE: 0.003). Notably, European indices (DAX, CAC 40) present significant challenges, where BiTCN and RMoK underperform (MAE: 0.032–0.038), suggesting limitations in modelling abrupt volatility shifts characteristic of these markets. These results highlight critical regional performance variations and provide insights into architectural efficacy under diverse market conditions.
dc.identifier.citationHassan, A. D. & Ibrahim, M. M. (2025). Neural titans in market prediction: MLP, transformer, & hybrid models across G-7 and China. Applied Economics Letters, 1-6. https://www.doi.org/10.1080/13504851.2025.2497429
dc.identifier.doi10.1080/13504851.2025.2497429
dc.identifier.endpage6
dc.identifier.issn1350-4851
dc.identifier.issn1466-4291
dc.identifier.scopus2-s2.0-105008502724
dc.identifier.scopusqualityQ2
dc.identifier.startpage1
dc.identifier.urihttps://www.doi.org/10.1080/13504851.2025.2497429
dc.identifier.urihttp://hdl.handle.net/20.500.12154/3358
dc.indekslendigikaynakScopus
dc.institutionauthorHassan, Arab Dahir
dc.institutionauthorIbrahim, Mahat Maalim
dc.institutionauthorid0000-0003-2397-4126
dc.institutionauthorid0000-0001-8450-7551
dc.language.isoen
dc.publisherRoutledge
dc.relation.ispartofApplied Economics Letters
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Öğrenci
dc.relation.publicationcategoryÖğrenci
dc.relation.sdgGoal-08: Decent Work and Economic Growth
dc.relation.sdgGoal-09: Industry, Innovation and Infrastructure
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectFinancial Market Forecasting
dc.subjectTSMixer
dc.subjectiTransformer
dc.subjectN-BEATS
dc.subjectN-HiTS
dc.titleNeural titans in market prediction: MLP, transformer, & hybrid models across G-7 and China
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublicationff87e4d9-d11f-45d2-870b-10d0d165ab17
relation.isAuthorOfPublication.latestForDiscoveryff87e4d9-d11f-45d2-870b-10d0d165ab17
relation.isOrgUnitOfPublication9d1809d1-3541-41aa-94ed-639736b7e16f
relation.isOrgUnitOfPublication.latestForDiscovery9d1809d1-3541-41aa-94ed-639736b7e16f

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
hassan-d.pdf
Boyut:
1.5 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: