Neural titans in market prediction: MLP, transformer, & hybrid models across G-7 and China
dc.authorid | 0000-0003-2397-4126 | |
dc.authorid | 0000-0001-8450-7551 | |
dc.contributor.author | Hassan, Arab Dahir | |
dc.contributor.author | Ibrahim, Mahat Maalim | |
dc.contributor.other | Yönetim Bilimleri Fakültesi, İktisat Bölümü | |
dc.date.accessioned | 2025-06-11T06:11:06Z | |
dc.date.issued | 2025 | |
dc.department | İHÜ, Yönetim Bilimleri Fakültesi, İktisat Bölümü | |
dc.department | İHÜ, Lisansüstü Eğitim Enstitüsü, İktisat Ana Bilim Dalı | |
dc.description.abstract | This study aims to conduct a comparative evaluation of eight state-of-the-art forecasting models – TimeMixer, PatchTST, iTransformer, NHITS, NBEATS, SOFTS, RMoK, and BiTCN – representing diverse deep learning architectures, neural basis expansion techniques, and hybrid approaches, for predicting stock market prices. We assess their performance across seven major global indices: the Shanghai Stock Exchange, S&P/TSX Composite, FTSE 100, DAX, CAC 40, S&P 500, and Nikkei 225, using rigorous metrics (MAE, SMAPE and RMSE). Our findings indicate that neural basis expansion models (NHITS, NBEATS) achieve superior overall accuracy (aggregated MAE: 0.013–0.014), particularly in North American and Asian markets. In contrast, transformer-based architectures exhibit market-specific strengths, with iTransformer delivering exceptional performance on Canada’s S&P/TSX (MAE: 0.003). Notably, European indices (DAX, CAC 40) present significant challenges, where BiTCN and RMoK underperform (MAE: 0.032–0.038), suggesting limitations in modelling abrupt volatility shifts characteristic of these markets. These results highlight critical regional performance variations and provide insights into architectural efficacy under diverse market conditions. | |
dc.identifier.citation | Hassan, A. D. & Ibrahim, M. M. (2025). Neural titans in market prediction: MLP, transformer, & hybrid models across G-7 and China. Applied Economics Letters, 1-6. https://www.doi.org/10.1080/13504851.2025.2497429 | |
dc.identifier.doi | 10.1080/13504851.2025.2497429 | |
dc.identifier.endpage | 6 | |
dc.identifier.issn | 1350-4851 | |
dc.identifier.issn | 1466-4291 | |
dc.identifier.scopus | 2-s2.0-105008502724 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 1 | |
dc.identifier.uri | https://www.doi.org/10.1080/13504851.2025.2497429 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12154/3358 | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Hassan, Arab Dahir | |
dc.institutionauthor | Ibrahim, Mahat Maalim | |
dc.institutionauthorid | 0000-0003-2397-4126 | |
dc.institutionauthorid | 0000-0001-8450-7551 | |
dc.language.iso | en | |
dc.publisher | Routledge | |
dc.relation.ispartof | Applied Economics Letters | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Öğrenci | |
dc.relation.publicationcategory | Öğrenci | |
dc.relation.sdg | Goal-08: Decent Work and Economic Growth | |
dc.relation.sdg | Goal-09: Industry, Innovation and Infrastructure | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Financial Market Forecasting | |
dc.subject | TSMixer | |
dc.subject | iTransformer | |
dc.subject | N-BEATS | |
dc.subject | N-HiTS | |
dc.title | Neural titans in market prediction: MLP, transformer, & hybrid models across G-7 and China | |
dc.type | Article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | ff87e4d9-d11f-45d2-870b-10d0d165ab17 | |
relation.isAuthorOfPublication.latestForDiscovery | ff87e4d9-d11f-45d2-870b-10d0d165ab17 | |
relation.isOrgUnitOfPublication | 9d1809d1-3541-41aa-94ed-639736b7e16f | |
relation.isOrgUnitOfPublication.latestForDiscovery | 9d1809d1-3541-41aa-94ed-639736b7e16f |