Delen, Dursun
Yükleniyor...
Araştırma projeleri
Organizasyon Birimleri
Lisansüstü Eğitim Enstitüsü, İşletme Ana Bilim Dalı
İş dünyasının giderek karmaşıklaşan ve dinamik hale gelen yapısı, farklı disiplinlerden gelen bireylerin aynı örgütsel çatı altında aynı amaçlar doğrultusunda etkin ve verimli çalışmalarını zorunlu hale getirmiştir. Bu sebeple de, işletmenin tüm işlevlerini bütüncül bir bakış açısı ile değerlendirebilecek ve bu hususları faaliyet gösterilen ekosistemin diğer dinamikleri ile uyumlu yönetebilecek bireylere duyulan ihtiyaç artmıştır. Ayrıca, teknoloji alanında yaşanan baş döndürücü gelişmeler rekabetin sahasını genişletmiş ve özellikle üretim, dağıtım, pazarlama ve finans alanlarında entegre bilgi birikimine sahip, yönetsel becerisi yüksek insan kaynağına önemli ölçüde bir talep doğurmuştur.
Adı Soyadı
Dursun Delen
İlgi Alanları
Sağlık Analitiği, Karar Destek Sistemleri, Sağlık Analitiği, İş Zekası, İş Analitiği
Kurumdaki Durumu
Pasif Personel
20 sonuçlar
Arama Sonuçları
Listeleniyor 1 - 10 / 20
Yayın Optimizing sustainable industry investment selection: A golden cut-enhanced quantum spherical fuzzy decision-making approach(Elsevier, 2023) Dinçer, Hasan; Yüksel, Serhat; Sonko, Mariama; Hacıoğlu, Ümit; Yılmaz, Mustafa Kemal; Delen, Dursun; Yönetim Bilimleri Fakültesi, İşletme BölümüThis study aims to rank sustainable industry alternatives in emerging markets based on the directional impact relations of the environmental, social, and governance (ESG) index components for a socially and environmentally conscious investment strategy. To achieve this goal, we employ a golden cut-enhanced quantum spherical fuzzy decision-making approach. Specifically, we first use a quantum spherical fuzzy DEMATEL technique to identify the impact-relation directions and the weights of the ESG criteria set. Second, we employ the extended TOPSIS with the quantum spherical fuzzy sets to rank the industry alternatives concerning their directional ESG performances. The findings show that (i) H20 Emissions, Innovation, Community Investment, Gender Equity, Human Rights, and CSR Strategy are the main influencing factors based on their impact-relations directional scores, (ii) Resource Usage, Product Responsibility, and Shareholders’ Rights are the set of criteria under the influence of remaining ESG, (iii) Innovation is the strongest ESG performance criterion, whereas Human Rights is the weakest, (iv) technology and communication are the best-performing industries based on the directional ESG index performance scores, whereas real estate and basic materials industries are the worst performing. The study provides valuable and actionable insights for companies that aim to make socially responsible investments.Yayın A probabilistic data analytics methodology based on Bayesian Belief network for predicting and understanding breast cancer survival(Elsevier, 2022) Delen, Dursun; Delen, Dursun; Dağ, Aslı Z.; Akcam, Zümrüt; Kibis, Eyyub; Şimşek, Serhat; Delen, Dursun; Yönetim Bilimleri Fakültesi, İşletme Bölümü; Yönetim Bilimleri Fakültesi, İşletme BölümüUnderstanding breast cancer survival has proven to be a challenging problem for practitioners and researchers. Identifying the factors affecting cancer progression, their interrelationships, and their influence on patients’ long-term survival helps make timely treatment decisions. The current study addresses this problem by proposing a Tree-Augmented Bayesian Belief Network (TAN)-based data analytics methodology comprising of four steps: data acquisition and preprocessing, variable selection via Genetic Algorithm (GA), data balancing with synthetic minority over-sampling and random undersampling methods, and finally the development of the TAN model to determine the probabilistic inter-conditional dependency structure among breast cancer-related variables along with the posterior survival probabilities The proposed model is compared to well-known machine learning models. A what-if analysis has also been conducted to verify the associations among the variables in the TAN model. The relative importance of each variable has been investigated via sensitivity analysis. Finally, a decision support tool is developed to further explore the conditional dependency structure among the cancer-related factors. The results produced by the proposed methodology, namely the patientspecific posterior survival probabilities and the conditional relationships among the variables, can be used by healthcare professionals and physicians to improve the decision-making process in planning and managing breast cancer treatments. Our generic methodology can also accommodate other types of cancer and be applied to manage various medical procedures.Yayın Crafting performance-based cryptocurrency mining strategies using a hybrid analytics approach(Elsevier, 2021) Chlyeh, Dounia; Hacıoğlu, Ümit; Tatoğlu, Ekrem; Yılmaz, Mustafa Kemal; Delen, Dursun; Yönetim Bilimleri Fakültesi, İşletme BölümüCrafting and executing the best cryptocurrency mining strategy is vital to succeeding in cryptocurrency market investments. This study aims to identify the best cryptocurrency mining strategy based on service providers’ performance for cryptocurrency mining using a hybrid analytics approach, which integrates the Analytic Hierarchy Process (AHP) and Fuzzy-TOPSIS techniques, along with sensitivity analysis. The results show that hosted mining is the overall best cryptocurrency mining strategy, followed by home mining and cloud mining, based on both total cost of operations and cryptocurrency payout criteria. The empirical findings also suggest that the critical features of the highest performing service providers (i.e., hosted mining strategies and cloud mining) were their flexibility of contracts and the superior efficiency in terms of the daily payout. Finally, of the three location alternatives for home mining, Turkey ranks first compared to the U.S. and Europe.Yayın Development of a sustainable corporate social responsibility index for performance evaluation of the energy industry: A hybrid decision-making methodology(Elsevier, 2023) Hacıoğlu, Ümit; Yılmaz, Mustafa Kemal; Delen, Dursun; Hacıoğlu, Ümit; Yılmaz, Mustafa Kemal; Delen, Dursun; Dinçer, Hasan; Yüksel, Serhat; Hacıoğlu, Ümit; Yılmaz, Mustafa Kemal; Delen, Dursun; Yönetim Bilimleri Fakültesi, İşletme Bölümü; Yönetim Bilimleri Fakültesi, İşletme BölümüThe ever-increasing pressure from stakeholders and policymakers on energy companies to achieve Sustainable Development Goals (SDGs) and Corporate Social Responsibility (CSR) mission requires them to reinvent their policies and practices. This study aims to examine the performance of alternative business models for the oil and gas industry by employing a hybrid business analytics methodology under a fuzzy environment resulting in a generalizable model named “Sustainable Development Goals-oriented CSR Index.” The proposed methodology employs a hybrid framework that utilizes bipolar Q-rung Orthopair Fuzzy (q-ROF), Multi Stepwise Weight Assessment Ratio Analysis (M-SWARA), and Elimination and Choice Translating Reality (ELECTRE) methods. The findings show that (i) the proposed model is reliable and consistent throughout the similar fuzzy set value ranges, (ii) clean energy is the most important SDG-oriented CSR Index factor for the sustainable energy industry in emerging economies, (iii) drilling is the best alternative energy sourcing for the oil and gas industry, and (iv) clean energy projects have the highest priority for energy investors. The results also highlight that global warming can be managed with effective energy practices for long-term sustainability. Finally, the findings suggest that energy companies should have the essential technological infrastructure and capable workforce to increase investment efficiency.Yayın An explanatory analytics framework for early detection of chronic risk factors in pandemics(Elsevier, 2022) Delen, Dursun; Delen, Dursun; Davazdahemami, Behrooz; Zolbanin, Hamed M.; Delen, Dursun; Yönetim Bilimleri Fakültesi, İşletme Bölümü; Yönetim Bilimleri Fakültesi, İşletme BölümüTimely decision-making in national and global health emergencies such as pandemics is critically important from various aspects. Especially, early identification of risk factors of contagious viral diseases can lead to efficient management of limited healthcare resources and saving lives by prioritizing at-risk patients. In this study, we propose a hybrid artificial intelligence (AI) framework to identify major chronic risk factors of novel, contagious diseases as early as possible at the time of pandemics. The proposed framework combines evolutionary search algorithms with machine learning and the novel explanatory AI (XAI) methods to detect the most critical risk factors, use them to predict patients at high risk of mortality, and analyze the risk factors at the individual level for each high-risk patient. The proposed framework was validated using data from a repository of electronic health records of early COVID-19 patients in the US. A chronological analysis of the chronic risk factors identified using our proposed approach revealed that those factors could have been identified months before they were determined by clinical studies and/or announced by the United States health officials.Yayın Big data analytics capabilities and firm performance: An integrated MCDM approach(Elsevier, 2020) Yasmin, Mariam; Kılıç, Hüseyin Selçuk; Tatoğlu, Ekrem; Zaim, Selim; Delen, Dursun; Yönetim Bilimleri Fakültesi, İşletme BölümüThis study explores the interdependence of big data analytics (BDA) capabilities and the impact of these capabilities on firm performance using an integrated multicriteria decision-making (MCDM) methodology. Drawing on a rich data set obtained from selected case study firms in Pakistan, three MCDM tools, namely, intuitionistic fuzzy decision-making trial and evolution laboratory (IF-DEMATEL), analytic network process (ANP), and simple additive weighting (SAW), are employed to assess the relative importance of BDA capabilities and the relationship of these capabilities with the firm performance. The results show that BDA capabilities are interdependent, and infrastructure capabilities are the highest-ranked among all, followed by management and human resource capabilities, respectively. The SAW results indicate an association between BDA capabilities and firm performance. Moreover, BDA capabilities are more strongly related to operational performance than to market performance.Yayın The use of multi-criteria decision-making methods in business analytics: A comprehensive literature review(Elsevier, 2022) Delen, Dursun; Delen, Dursun; Yalçın, Ahmet Selçuk; Kılıç, Hüseyin Selçuk; Delen, Dursun; Yönetim Bilimleri Fakültesi, İşletme Bölümü; Yönetim Bilimleri Fakültesi, İşletme BölümüBusiness analytics (BA) systems are considered significant investments for enterprises because they have the potential to considerably improve firms’ performance. With the value offered by BA, companies are able to discover the hidden information in the data, improve decision-making processes, and support strategic planning. On the other hand, because there are multiple criteria and multiple alternatives involved in most decision- making situations, multi-criteria decision-making (MCDM) methods play an important role in BA practices. Providing inputs to the components of descriptive or predictive analytics or being used as a decision-making tool for evaluating the alternatives within prescriptive analytics exemplify the roles. Therefore, the use of hidden information discovered by business analytics and the need for utilizing the right MCDM method for optimal decision-making made these two concepts inseparable. In this paper, in order to review the use of MCDM methods in BA, the subject of BA is investigated from a taxonomical perspective (descriptive, predictive, and prescriptive), and its connection with MCDM techniques is revealed. Similarly, MCDM methods are studied using two main categories, multi-attribute decision making (MADM) and multi-objective decision making (MODM) methods. Furthermore, tabular and graphical analyses are also performed within the proposed review meth-odology. To the best of our knowledge, this review is the first attempt that holistically considers the use of MCDM methods in BA.Yayın An analytic approach to assessing organizational citizenship behavior(Elsevier, 2017) Tatoğlu, Ekrem; Zaim, Selim; Delen, Dursun; Tatoğlu, Ekrem; Zaim, Selim; Delen, Dursun; Arda, Özlem Ayaz; Delen, Dursun; Tatoğlu, Ekrem; Zaim, Selim; Yönetim Bilimleri Fakültesi, İşletme Bölümü; Yönetim Bilimleri Fakültesi, İşletme BölümüThis study examines the organizational citizenship behavior (OCB) of employees by designing and developing an analytic network process (ANP) methodology. The viability of the proposed methodology is demonstrated via the sales representatives of Beko, a brand name controlled by Koç Group. We first develop a conceptual framework based on qualitative research methods – in-depth interviews and focus group sessions. We employ the principles of ANP methodology to examine and discover the inter-relationships among the OCBs. This process results in a descriptive model that encapsulates the findings from both qualitative and analytics methods. Necessity, altruism, departmental, compliance, and independence are the underlying dimensions of OCBs found to be the most influential/important. The key novelty of this study resides in designing and developing a prescriptive analytics (i.e. ANP) methodology to evaluate the OCBs, which is rare in the area of organizational behavior (a managerial field of study that have been dominated by traditional statistical methods), and thus serves as a useful contribution/augmentation to the business/managerial research methods, and also extends the reach/coverage of analytics-based decision support systems research and practice into a new direction.Yayın An interactive decision support system for real-time ambulance relocation with priority guidelines(Elsevier, 2022) Delen, Dursun; Delen, Dursun; Hajiali, Mahdi; Teimoury, Ebrahim; Rabiee, Meysam; Delen, Dursun; Yönetim Bilimleri Fakültesi, İşletme Bölümü; Yönetim Bilimleri Fakültesi, İşletme BölümüChanges in demand patterns and unexpected events are the two primary sources of delays in healthcare emergency operations. To mitigate such delays, researchers proposed the movement of idle ambulances between emergency bases as one of the effective ways to improve the areal coverage of future demands. In this study, we have developed a model-driven decision support system that simultaneously seeks to maximize demand coverage while minimizing travel time by optimally relocating emergency response vehicles. The developed mathematical model partitions and prioritizes demand into four categories and continuously updates them over time. Furthermore, it dynamically calculates the number of coverages in different regions based on the current location of idle ambulances. Also, we developed a real-time risk assessment DSS for recommended relocations, which could be utilized as a reference by the EMS user while implementing suggested relocation decisions. A real case study is used to validate the proposed DSS, and its final output is compared to the existing operational policy. The findings show that the average workload added to each ambulance due to relocations has significantly improved the response time and coverage ratio. Compared to the existing operational policy, the developed decision support system decreased the time to respond to calls, which was deemed to be more than to offsets the increase in travel time due to relocation. Furthermore, the system also reduced the total working time of all ambulances by about 9% per shift.Yayın Assessing the supply chain performance: A causal analysis(Springer US, 2019) Tatoğlu, Ekrem; Zaim, Selim; Delen, Dursun; Tatoğlu, Ekrem; Zaim, Selim; Delen, Dursun; Bayraktar, Erkan; Sarı, Kazım; Tatoğlu, Ekrem; Zaim, Selim; Delen, Dursun; Yönetim Bilimleri Fakültesi, İşletme Bölümü; Yönetim Bilimleri Fakültesi, İşletme BölümüMeasuring the performance-related factors of a unit within a supply-chain is a challenging problem, mainly because of the complex interactions among the members governed by the supply chain strategy employed. Synergistic use of discrete-event simulation and structural equation modeling allows researchers and practitioners to analyze causal relationships between order-fulfillment characteristics of a supply-chain and retailers’ performance metrics. In this study, we model, simulate, and analyze a two-level supply-chain with seasonal linear demand, and using the information therein, develop a causal model to measure the links/relationships among the order-fulfillment factors and the retailer’s performance. According to the findings, of all the order-fulfillment characteristics of a supply-chain, the forecast inaccuracy was found to be the most important in mitigating the bullwhip effect. Concerning the total inventory cost and fill-rate as performance indicators of retailers, the desired service level had the highest priority, followed by the lead-time and forecast inaccuracy, respectively. To reduce the total inventory cost, the bullwhip effect seems to have the lowest priority for the retailers, as it does not appear to have a significant impact on the fill rate. Although seasonality (to some extent) influences the retailer’s performance, it does not seem to have a significant impact on the ranking of the factors affecting retailers’ supply-chain performance; except for the case where the backorder cost is overestimated.