Khan, Asad ul Islam

Yükleniyor...
Profil fotoğrafı
E-posta Adresi ORCID Profili WoS Profili Scopus Profili YÖK Araştırmacı Profili Google Akademik Profili TR-Dizin Profili SOBİAD Profili Web Sitesi

Araştırma projeleri

Organizasyon Birimleri

Organizasyon Birimi
Yönetim Bilimleri Fakültesi, İktisat Bölümü
İktisat Bölümü, başta Türkiye ve çevre ülkeler olmak üzere küresel ekonomileri anlayan, var olan sorunları analiz ederken, iktisadi kuramları ve kavramları yetkin ve özgün bir şekilde kullanma becerisine sahip bireyler yetiştirmeyi amaçlamaktadır.

Adı Soyadı

Khan

İlgi Alanları

Solunum Sistemi, Genel ve Dahili Tıp, Çevre Bilimleri ve Ekoloji, İş Ekonomisi, Bilim ve Teknoloji

Kurumdaki Durumu

Aktif Personel

Arama Sonuçları

Listeleniyor 1 - 2 / 2
  • Yayın
    Constant time calculation of the metric dimension of the join of path graphs
    (MDPI, 2023) Khan, Asad ul Islam; Khan, Asad ul Islam; Zhang, Chuanjun; Haidar, Ghulam; Khan, Murad ul Islam; Yousafzai, Faisal; Hila, Kostaq; Khan, Asad ul Islam; Yönetim Bilimleri Fakültesi, İktisat Bölümü; Yönetim Bilimleri Fakültesi, İktisat Bölümü
    The distance between two vertices of a simple connected graph G, denoted as (Formula presented.), is the length of the shortest path from u to v and is always symmetrical. An ordered subset (Formula presented.) of (Formula presented.) is a resolving set for G, if for ? (Formula presented.), there exists (Formula presented.) ? (Formula presented.). A resolving set with minimal cardinality is called the metric basis. The metric dimension of G is the cardinality of metric basis of G and is denoted as (Formula presented.). For the graph (Formula presented.) and (Formula presented.), their join is denoted by (Formula presented.). The vertex set of (Formula presented.) is (Formula presented.) and the edge set is (Formula presented.). In this article, we show that the metric dimension of the join of two path graphs is unbounded because of its dependence on the size of the paths. We also provide a general formula to determine this metric dimension. We also develop algorithms to obtain metric dimensions and a metric basis for the join of path graphs, with respect to its symmetries.
  • Yayın
    Metric dimensions of bicyclic graphs
    (MDPI, 2023) Khan, Asad; Haidar, Ghulam; Abbas, Naeem; Khan, Murad ul Islam; Niazi, Azmat Ullah Khan; Khan, Asad ul Islam; Yönetim Bilimleri Fakültesi, İktisat Bölümü
    The distance d(va, vb) between two vertices of a simple connected graph G is the length of the shortest path between va and vb. Vertices va, vb of G are considered to be resolved by a vertex v if d(va, v) 6= d(vb, v). An ordered set W = fv1, v2, v3, . . . , vsg V(G) is said to be a resolving set for G, if for any va, vb 2 V(G), 9 vi 2 W 3 d(va, vi) 6= d(vb, vi). The representation of vertex v with respect to W is denoted by r(vjW) and is an s-vector(s-tuple) (d(v, v1), d(v, v2), d(v, v3), . . . , d(v, vs)). Using representation r(vjW), we can say that W is a resolving set if, for any two vertices va, vb 2 V(G), we have r(vajW) 6= r(vbjW). A minimal resolving set is termed a metric basis for G. The cardinality of the metric basis set is called the metric dimension of G, represented by dim(G). In this article, we study the metric dimension of two types of bicyclic graphs. The obtained results prove that they have constant metric dimension.