Quantitative analysis of cryptocurrency susceptibility: A mathematical benchmarking model
| dc.contributor.author | Bekiroğlu, Ayman | |
| dc.contributor.other | Yönetim Bilimleri Fakültesi, İktisat Bölümü | |
| dc.date.accessioned | 2025-11-07T14:16:59Z | |
| dc.date.issued | 2025 | |
| dc.department | İHÜ, Yönetim Bilimleri Fakültesi, İktisat Bölümü | |
| dc.description.abstract | The rise of cryptocurrencies has brought attention to significant security challenges, particularly the 51% attack. This study focuses on developing benchmarks to evaluate varying levels of vul nerability among cryptocurrencies. A detailed review of the literature identifies a lack of ap proaches having statistical rigor, leading to the development of a comprehensive susceptibility test model. The proposed model is basedonkey parameters extracted from existing studies and validated with additional quantitative data for accuracy and reliability. Benchmarking thresholds are determined using k-means clustering, allowing for the classification of cryptocurrencies into distinct security profiles. The analysis identifies five clusters: resilient cryptocurrencies have sus ceptibility scores below 0.532, while scores exceeding 1.557 indicate high vulnerability. The re maining clusters represent intermediate levels of resilience and risk. These findings contribute to a better understanding of cryptocurrency security, supporting informed investment decisions and providing a basis for future research and policy development. | |
| dc.identifier.citation | Bekiroğlu, A. M. (2025). Quantitative analysis of cryptocurrency susceptibility: A mathematical benchmarking model. Journal of Information Systems Engineering and Management, 10(36s), 818-835. | |
| dc.identifier.endpage | 835 | |
| dc.identifier.issn | 2468-4376 | |
| dc.identifier.issue | 36s | |
| dc.identifier.orcid | 0000-0002-1902-3195 | |
| dc.identifier.startpage | 818 | |
| dc.identifier.uri | http://hdl.handle.net/20.500.12154/3627 | |
| dc.identifier.volume | 10 | |
| dc.institutionauthor | Bekiroğlu, Ayman Mohammad | |
| dc.institutionauthorid | 0000-0002-1902-3195 | |
| dc.language.iso | en | |
| dc.publisher | International Association for Digital Transformation and Technological Innovation | |
| dc.relation.ispartof | Journal of Information Systems Engineering and Management | |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
| dc.relation.sdg | N/A | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.subject | Cryptocurrency | |
| dc.subject | Security Majority Attack | |
| dc.subject | Informed Investment Decisions | |
| dc.subject | Susceptibility Test Model | |
| dc.subject | Mathematical Modeling | |
| dc.subject | K-means Clustering | |
| dc.title | Quantitative analysis of cryptocurrency susceptibility: A mathematical benchmarking model | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | c71abf5e-c261-49bb-9eb3-319fe44aac23 | |
| relation.isAuthorOfPublication.latestForDiscovery | c71abf5e-c261-49bb-9eb3-319fe44aac23 | |
| relation.isOrgUnitOfPublication | 9d1809d1-3541-41aa-94ed-639736b7e16f | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 9d1809d1-3541-41aa-94ed-639736b7e16f |










